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Introduction

Introduction
Statistical Assumptions for the t-Test

In Psychology 310, we discussed the statistical assumptions of the
classic multi-sample t statistics, of which the two-sample independent
sample t is the simplest and best known special case.

1 Independence of observations. Each observation is independent. As we
emphasized in Psychology 310, the classic formula for the sampling
variance of the sample mean, Var(X •) = σ2/n, is based on this
assumption.

2 Normality. The distribution of the populations is assumed to be normal.

3 Homogeneity of variances. The populations are assumed to have equal
variances.

We need to consider, in turn,

1 How violations of these assumptions affect performance of the t-test.

2 What methods are available to produce reasonable inferential
performance when assumptions are violated.

3 How to detect violations of assumptions.
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Effect of Violations of Assumptions Independence

Effect of Violations
Independence

If the n observations are independent, then X • has a sampling
variance of σ2/n. Otherwise, the sampling variance may be quite
different.

Since most classic tests assume the formula σ2/n is correct, they can
be seriously in error if this assumption is violated.

Exactly what the affect of the error is depends on the precise nature
of the dependency.

If the pattern of dependency is known, it may be possible to correct
for it, using linear combination theory as taught in Psychology 310.
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Effect of Violations of Assumptions Normality

Effect of Violations
Normality

A key fact about the normal distribution is that the sample mean and
sample variance of a set of observations taken randomly from a
normal population are independent.

This independence of the mean and variance are crucial in the
derivation of Student’s t distribution.

When populations are not normal, this lack of independence can lead
to poor performance of the t-test.
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Effect of Violations of Assumptions Normality

Effect of Violations
Normality

Violations of normality can occur in several distinct ways.

The general shape of the distribution can be skewed, in some cases
for obvious reasons related to the nature of the measurement process.

There can be contamination by outliers. These extreme and unusual
observations lead to the distribution having tails that are much longer
than seen with a normal distribution.

Yet, if the contamination probability is small, it may be difficult to
diagnose outlier problems when they occur. For example, are the
outliers the result of:

1 A mixture of two or more processes (or subgroups) that characterize
the population of interest?

2 A random measurement error?
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Effect of Violations of Assumptions Normality

Effect of Violations
Normality

High skewness or kurtosis can lead to Type I error rates that are
either much higher or much lower than the nominal rates.

Contamination by outliers can lead to a significant loss of power when
the null hypothesis is false.
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Effect of Violations of Assumptions Homogeneity of Variances

Effect of Violations
Homogeneity of Variances

Consider the two-sample independent sample t-statistic.

In Psychology 310, we saw that the denominator of the statistic
explicitly assumes equal variances.

Recall that, with independent samples, the variance of 1−2 is

Var(1−2) =
σ2

1

n1
+
σ2

2

n2
(1)

The t statistic replaces this formula with one that assumes equal
variances, i.e.,

Var(1−2) =

(
1

n1
+

1

n2

)
σ2 (2)

and then substitutes the estimate σ̂2 for σ2, where

σ̂2 =
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
(3)
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Effect of Violations of Assumptions Homogeneity of Variances

Effect of Violations
Homogeneity of Variances

Notice that, in the preceding formula, we are essentially substituting
the (weighted) average of the two variances for each variance in the
formula for the sampling variance of 1−2.

If the assumption of equal variances is correct, the resulting formula
will be a consistent estimate of the correct quantity.

What will the effect be if the assumption of equal variances is
incorrect?

How can we approximate the impact of a violation of the equal
variances assumption on the true Type I error rate of the t-test when
the null hypothesis is true?
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Effect of Violations of Assumptions Homogeneity of Variances

Effect of Violations
Homogeneity of Variances

One simplified approach would be two assume that there is no
sampling error in the sample variances, i.e., that s2

1 = σ2
1 and

s2
2 = σ2

2, and measure the result of the violation of assumptions.

For example, suppose σ2
1 = 40, and σ2

2 = 10, while n1 = 10 and
n2 = 20. What will the approximate effect on the true α?
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Effect of Violations of Assumptions Homogeneity of Variances

Effect of Violations
Homogeneity of Variances

Using our simplified assumption that the sample variances would
perfectly estimate the population variances, let’s compute the ratio of
the obtained denominator to the correct denominator.

First, let’s compute σ̂2.

σ̂2 =
(10− 1)40 + (20− 1)(10)

10 + 20− 2

=
360 + 190

28
= 19.64286

The obtained denominator is then√
V̂ar(1−2) =

√(
1

n1
+

1

n2

)
σ̂2

=

√(
1

10
+

1

20

)
19.64286

=
√

2.946429

= 1.716516
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Effect of Violations of Assumptions Homogeneity of Variances

Effect of Violations
Homogeneity of Variances

However, the correct denominator is√
40

10
+

10

20
=
√

4.5 = 2.12132 (4)

The obtained denominator is considerably smaller than it should be.
So the t statistic will, in general, be larger in value than it should be,
and will therefore reject more often than it should.

The critical value of the t statistic with 28 degrees of freedom is

> qt(.975,28)

[1] 2.048407

Since obtained values of the t statistic are, in effect, expanded by the
ratio 2.12132/1.71516, the true α can be approximated as the area
outside absolute t values of

> 1.71516/2.12132 * qt(.975,28)

[1] 1.656207

This is

> 2*pt(1.71516/2.12132 * qt(.025,28),28 )

[1] 0.1088459
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Effect of Violations of Assumptions Homogeneity of Variances

Effect of Violations
Homogeneity of Variances

The above estimate of .109 was obtained with a simplifying
assumption, and is an approximation.

An alternative approach is Monte Carlo simulation.

> js.t.test <- function(data1,data2,alpha){
+ n1 <- length(data1)

+ n2 <- length(data2)

+ df <- n1 + n2 - 2

+ crit.t <- qt(1-alpha/2,df)

+ sigma.hat.squared <- ((n1-1)*var(data1) + (n2-1)*var(data2))/df

+ t.obtained <- (mean(data1)-mean(data2))/sqrt(((1/n1)+(1/n2))*sigma.hat.squared)

+ return(c(t.obtained,abs(t.obtained) > crit.t))

+ }
> set.seed(12345)

> rowMeans(replicate(10000,js.t.test(rnorm(10,0,sqrt(40)),rnorm(20,0,sqrt(10)),.05)))

[1] 0.01248439 0.11550000

This confirms that the true α is more than twice as large as the
nominal α of .05.
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Effect of Violations of Assumptions Homogeneity of Variances

Effect of Violations
Homogeneity of Variances

Using the approaches just demonstrated, we can verify the following
general principles, as described by RDASA3 (p.137):

1 If the two sample sizes are equal, the difference between nominal and
true α will be minimal, unless sample sizes are really small and the
variance ratio really large.

2 If the two samples sizes are unequal, and the variances are inversely
related to sample sizes, then the true α will substantially exceed the
nominal α.

3 If the two sample sizes are unequal, and the variances are directly
related to sample sizes, then the true α will be substantially lower than
the nominal α.
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Dealing with Assumption Violations Non-Normality

Dealing with Non-Normality
When data show a recognized non-normal distribution, one has
recourse to several options:

1 Do nothing. If violation of normality is not severe, the t-test may be
reasonably robust.

2 Transform the data. This seems especially justifiable if the data have a
similar non-normal shape. With certain kinds of shapes, certain
transformations will convert the distributions to be closer to normality.
However, this approach is generally not recommended, for a variety of
reasons.

3 Trim the data. By trimming a percentage of the more extreme cases
from the data, the skewness and kurtosis may be brought more into
line with those of a normal distribution.

4 Use a non-parametric procedure. Tests for equality of means that do
not assume normality are available. However, they generally assume
that the two samples have equal distributions, not that they simply
have equal means (or medians).

Although the “jury is still out” on these matters, a number of authors
writing on robustness in social science statistical journals (e.g., Algina,
Keselman, Lix, Wilcox) have promoted the use of trimmed means.

In the preceding lecture module, we described a single sample test
and confidence interval using a trimmed mean.

One could examine the data and then choose a trimming proportion
γ, but many authors recommend using a fixed value of γ = 0.20 to
avoid the general problems connected with post hoc analysis.
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Dealing with Assumption Violations Non-Normality

Two-Sample Trimmed Mean Test

In their Tech Note 7.1, MWL discuss an analog of the two-sample
independent sample t-test, assuming equal population variances.

This formula has an obvious error, in that it allows the sample sizes
to be unequal while tacitly assuming that the number of trimmed
observations taken from each tail is the same (i.e., k in the MWL
notation) in each sample.

Of course, if the sample sizes are unequal and γ remains fixed in the
two samples, then the number of trimmed observations will not be
the same.

The corrected formula is given below.
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Dealing with Assumption Violations Non-Normality

Two-Sample Trimmed Mean Test

Define the number of observations trimmed from each tail of the
groups as g1 and g2. Define the “effective n” for group j as
hj = nj − 2gj , and the Winsorized sum of squared deviations for each
group as SSWj = (nj − 1)s2

wj
.

The pooled Winsorized variance estimate is

σ̂2
w =

SSW1 + SSW2

h1 + h2 − 2
(5)

Then the t statistic is

th1+h2−2 =
Ȳt1 − Ȳt2√
( 1
h1

+ 1
h2

)σ̂2
w

(6)
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Dealing with Assumption Violations Unequal Variances

Dealing with Unequal Variances
The Welch Test

With unequal variances, a standard approach, recommended in many
textbooks, is to employ the Welch test, which can be generalized to
the analysis of variance setting.

In the case of the two-sample t statistic, the Welch test employs a
modified test statistic,

t ′ =
Ȳ1 − Ȳ2√

s2
1
n1

+
s2

2
n2

(7)

and modified degrees of freedom

df ′ =
(s2

1/n1 + s2
2/n2)2

s4
1

n2
1(n1−1)

+
s4

2

n2
2(n2−1)

(8)
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Dealing with Assumption Violations Unequal Variances

Dealing with Unequal Variances
The Welch Test

The Welch test is implemented in the R function oneway.test().

It is also implemented in the MASS library R function t.test.

Suppose we had an experimental population that if, untreated, would
have a normal distribution with a mean of 50 and a standard
deviation of 10.

However, if exposed to a treatment, the variance of scores would be
increased by a factor of 9, while the mean would remain unchanged.

From our principles of linear transformation, we know that the
resulting experimental group would have a mean of 50 and a standard
deviation of 30.

Suppose further that the experimental treatment is very expensive to
administer, and so the ratio of experimental to control subjects in the
study is 1 to 5, and that you end up with 100 control subjects and
just 20 experimental subjects.

Let’s simulate some data from this situation.
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Dealing with Assumption Violations Unequal Variances

Dealing with Unequal Variances
The Welch Test

We begin by simulating some data from the control group and
experimental group, and combining them into a single matrix.

> make.data <-function(){
+ y <- c(rnorm(100,50,10),rnorm(20,50,30))

+ group <- c(rep(1,100),rep(2,20))

+ data <- cbind(y,group)

+ return(data)

+ }
> tdata<-make.data()

> t.test(y~group,var.equal=TRUE,data=tdata)

Two Sample t-test

data: y by group

t = -0.3953, df = 118, p-value = 0.6933

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-8.917425 5.949373

sample estimates:

mean in group 1 mean in group 2

49.28534 50.76937

Next, we perform the ordinary two-sample t-test.
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Dealing with Assumption Violations Unequal Variances

Dealing with Unequal Variances
The Welch Test

Note that we must specify equal variances for the standard test to be
done. The default is to always use the Welch test.

> t.test(y~group,var.equal=TRUE,data=tdata)

Two Sample t-test

data: y by group

t = -0.3953, df = 118, p-value = 0.6933

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-8.917425 5.949373

sample estimates:

mean in group 1 mean in group 2

49.28534 50.76937

Compare the above results to those obtained from the Welch test.

> t.test(y~group,data=tdata)

Welch Two Sample t-test

data: y by group

t = -0.2331, df = 20.269, p-value = 0.818

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-14.75195 11.78390

sample estimates:

mean in group 1 mean in group 2

49.28534 50.76937
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Dealing with Assumption Violations Unequal Variances

Dealing with Unequal Variances
The Welch Test

How do the two tests perform in general under these circumstances?

Simulation can tell us. First, we have to learn how to get the p-value
from our output.

We can do that by using the str() function to examine the contents
of the t.test object.

> output <- t.test(y~group,var.equal=TRUE,data=make.data())

> str(output)

List of 9

$ statistic : Named num -2.91

..- attr(*, "names")= chr "t"

$ parameter : Named num 118

..- attr(*, "names")= chr "df"

$ p.value : num 0.00437

$ conf.int : atomic [1:2] -18.06 -3.42

..- attr(*, "conf.level")= num 0.95

$ estimate : Named num [1:2] 48.7 59.4

..- attr(*, "names")= chr [1:2] "mean in group 1" "mean in group 2"

$ null.value : Named num 0

..- attr(*, "names")= chr "difference in means"

$ alternative: chr "two.sided"

$ method : chr " Two Sample t-test"

$ data.name : chr "y by group"

- attr(*, "class")= chr "htest"
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Dealing with Assumption Violations Unequal Variances

Dealing with Unequal Variances
The Welch Test

Soon, we’re on our way to a quick simulation.

> replicate(5,t.test(y~group,var.equal=TRUE,

+ data=make.data())$p.value)

[1] 0.12059612 0.01241230 0.01288572 0.12910297 0.34593059

> replicate(5,t.test(y~group,var.equal=TRUE,

+ data=make.data())$p.value<.05)

[1] TRUE FALSE FALSE FALSE FALSE
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Dealing with Assumption Violations Unequal Variances

Dealing with Unequal Variances
The Welch Test

As we see below, clearly the Welch test controls Type I error in this
situation much more effectively than the standard t-test.

> set.seed(12345)

> mean(replicate(2000,t.test(y~group,

+ var.equal=TRUE,data=make.data())$p.value<.05))

[1] 0.288

> set.seed(12345)

> mean(replicate(2000,t.test(y~group,

+ var.equal=FALSE,data=make.data())$p.value<.05))

[1] 0.0475
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Dealing with Assumption Violations Unequal Variances

Dealing with Unequal Variances
The Welch Test

However, it is important to realize that the Welch test is not an exact
test. As we shall see later, it does not perform well in some extreme
situations.
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Dealing with Assumption Violations Unequal Variances

General Testing Strategy
The Welch Test

How should one employ the Welch test?

Some authors advocate a sequential strategy, in which one first tests
for equal variances. If the equal variance test rejects, employ the
Welch test, otherwise employ the standard t-test.

This is, at its foundation, an “Accept-Support” strategy, in which one
employs the standard test if the null hypothesis is not rejected.

The fact that tests on variances have low power compromises this
strategy.

As a result, some authors advocate always doing a Welch test.
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Dealing with Assumption Violations Non-normality and Unequal Variances

Non-normality and Heterogeneity
The Yuen-Welch Test

The Yuen-Welch Test is a combination of the Welch test and the
two-sample test on trimmed means.

Define the squared estimated standard error as

dj =
SSWj

hj(hj − 1)
(9)

The Yuen-Welch test statistic is

tYuen =
Ȳt1 − Ȳt2√
d1 + d2

(10)

An adjusted degrees of freedom parameter is used for the test. This is
estimated as

νy =
(d1 + d2)2

d2
1

h1−1 +
d2

2
h2−1

(11)
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Dealing with Assumption Violations Non-normality and Unequal Variances

Non-normality and Heterogeneity
The Yuen-Welch Test

The Yuen-Welch test is implemented in the WRS library function
yuen.

Here, we simulate two samples with unequal n, unequal variances,
and long tails.

> contaminated.sample <- function(mu,sigma,n,p,mu2,sigma2)

+ {
+ x<-1:n

+ for(i in 1:n) {if(rbinom(1,1,p)==1)
+ x[i] <- rnorm(1,mu2,sigma2) else

+ x[i] <- rnorm(1,mu,sigma)}
+ return(x)

+ }
> x <- contaminated.sample(0,1,20,.10,0,10)

> y <- contaminated.sample(1,3,10,.10,1,15)

> js.t.test(x,y,.05)

[1] -0.9760167 0.0000000
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Dealing with Assumption Violations Non-normality and Unequal Variances

Non-normality and Heterogeneity
The Yuen-Welch Test

> ## Load augmented Wilcox Library Functions

> source("http://www.statpower.net/R311/Rallfun-v27.txt")

> source("http://www.statpower.net/R311/WRS.addon.txt")

> yuen(x,y,tr=0.20,alpha=.05)

$n1

[1] 20

$n2

[1] 10

$est.1

[1] 0.1862195

$est.2

[1] 1.052019

$ci

[1] -4.719953 2.988355

$p.value

[1] 0.5962929

$dif

[1] -0.8657992

$se

[1] 1.540801

$teststat

[1] 0.5619148

$crit

[1] 2.501396

$df

[1] 5.503793
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